Cannabinoid CB2 Agonist GW405833 Suppresses Inflammatory and Neuropathic Pain through a CB1 Mechanism that is Independent of CB2 Receptors in Mice.
نویسندگان
چکیده
GW405833, widely accepted as a cannabinoid receptor 2 (CB2) agonist, suppresses pathologic pain in preclinical models without the unwanted central side effects of cannabinoid receptor 1 (CB1) agonists; however, recent in vitro studies have suggested that GW405833 may also behave as a noncompetitive CB1 antagonist, suggesting that its pharmacology is more complex than initially appreciated. Here, we further investigated the pharmacologic specificity of in vivo antinociceptive actions of GW405833 in models of neuropathic (i.e., partial sciatic nerve ligation model) and inflammatory (i.e., complete Freund's adjuvant model) pain using CB2 and CB1 knockout (KO) mice, their respective wild-type (WT) mice, and both CB2 and CB1 antagonists. GW405833 (3, 10, and 30 mg/kg i.p.) dose dependently reversed established mechanical allodynia in both pain models in WT mice; however, the antiallodynic effects of GW405833 were fully preserved in CB2KO mice and absent in CB1KO mice. Furthermore, the antiallodynic efficacy of GW405833 (30 mg/kg i.p.) was completely blocked by the CB1 antagonist rimonabant (10 mg/kg i.p.) but not by the CB2 antagonist SR144528 (10 mg/kg i.p.). Thus, the antinociceptive properties of GW405833 are dependent on CB1 receptors. GW405833 (30 mg/kg i.p.) was also inactive in a tetrad of tests measuring cardinal signs of CB1 activation. Additionally, unlike rimonabant (10 mg/kg i.p.), GW405833 (10 mg/kg, i.p.) did not act as a CB1 antagonist in vivo to precipitate withdrawal in mice treated chronically with Δ9-tetrahydrocannabinol. The present results suggest that the antiallodynic efficacy of GW405833 is CB1-dependent but does not seem to involve engagement of the CB1 receptor's orthosteric site.
منابع مشابه
Activation of CB2 cannabinoid receptors by AM1241 inhibits experimental neuropathic pain: pain inhibition by receptors not present in the CNS.
We designed AM1241, a selective CB2 cannabinoid receptor agonist, and used it to test the hypothesis that CB2 receptor activation would reverse the sensory hypersensitivity observed in neuropathic pain states. AM1241 exhibits high affinity and selectivity for CB2 receptors. It also exhibits high potency in vivo. AM1241 dose-dependently reversed tactile and thermal hypersensitivity produced by l...
متن کاملEffect of Cannabinoid Receptor Activation on Spreading Depression
Objective(s) The objective of this study was to evaluate the effect of cannabinoid on cortical spreading depression (CSD) in rat brain. Cannabis has been used for centuries for both symptomatic and prophylactic treatment of different types of headaches including migraine. CSD is believed to be a putative neuronal mechanism underlying migraine aura and subsequent pain. Materials and Methods T...
متن کاملCB1 Knockout Mice Unveil Sustained CB2-Mediated Antiallodynic Effects of the Mixed CB1/CB2 Agonist CP55,940 in a Mouse Model of Paclitaxel-Induced Neuropathic Pain.
Cannabinoids suppress neuropathic pain through activation of cannabinoid CB1 and/or CB2 receptors; however, unwanted CB1-mediated cannabimimetic effects limit clinical use. We asked whether CP55,940 [(-)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3-hydroxypropyl)cyclohexanol], a potent cannabinoid that binds with similar affinity to CB1 and CB2 in vitro, produces functionally separable CB1- ...
متن کاملTwo Janus Cannabinoids That Are Both CB2 Agonists and CB1 Antagonists.
The cannabinoid signaling system includes two G protein-coupled receptors, CB1 and CB2 These receptors are widely distributed throughout the body and have each been implicated in many physiologically important processes. Although the cannabinoid signaling system has therapeutic potential, the development of receptor-selective ligands remains a persistent hurdle. Because CB1 and CB2 are involved...
متن کاملCB1 and CB2 receptor agonists promote analgesia through synergy in a murine model of tumor pain.
In light of the adverse side-effects of opioids, cannabinoid receptor agonists may provide an effective alternative for the treatment of cancer pain. This study examined the potency and efficacy of synthetic CB1 and CB2 receptor agonists in a murine model of tumor pain. Intraplantar injection of the CB1 receptor agonist arachidonylcyclopropylamide (ED(50) of 18.4 μg) reduced tumor-related mecha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 362 2 شماره
صفحات -
تاریخ انتشار 2017